Home

计算机网络基础知识

[Toc] Markdown设置带颜色字体 计算机网络 计算机网络的定义和分类004 定义:一些互相连接的、自治的计算机的集合 分类 按交换技术分类 电路交换网络 报文交换网络 分组交换网络 按使用者分类 公用网 专用网 按传输介质分类 有线网 无线网 按覆盖范围分类 广域网 WAN ...

Read more

Plan

学习C++刷题 SLC扩展Transductive Zero-shot Learning改投 CVPR2022 或者期刊 TIP 学习了解DA场景任务以及FSL

Read more

(Domain Adaptation) Semantic Segmentation

SOTA List GTA5-2-Cityscapes SYNTHIA-2-Cityscapes 上表中列出的关于无监督域适应语义分割的文章链接和代码库链接 AdaptSegNet Learning to Adapt Structured Output Space for Semantic Segmentation github BDL Bidirectional Learning for Domain Adaptation of Semantic Segmentation github AdvEnt Adversarial Entropy Minimization for Do...

Read more

C++入门

C++入门 参考材料1 参考材料2 c++引用 int &j = i 就是给变量i声明了另一个名称j,二者标记的是同一个指针地址。一个变量被重新赋值,另一个变量也会随之变化。 声明引用的时候需要初始化 引用和指针的区别? 引用可以作为函数参数,起到和指针同样的目的。例如下面的交换两个变量的值。 //1. 值传递 void mySwap01(int a, int b) { int temp = a; a = b; b = temp; } //2. 地址传递 void mySwap02(int* a, int* b) { int t...

Read more

DA调研

DA Classification Transferable Semantic Augmentation for Domain Adaptation 会议: CVPR 2021 作者:北京理工大学 代码:github Motivation and Contribution 作者认为深度学习网络一定程度上可以使得特征线性化(原文中 deep networks excel at disentangling the underlying factors of data variation and linearizing the deep features ),某些方向维度上的改变往往和一些语义上的转换相关,比如背景变换,...

Read more

计算ICC

Boosting the Generalization Capability in Cross-Domain Few-shot Learning via Noise-enhanced Supervised Autoencoder 这篇文章提到了一个评估特征提取器的泛化能力的指标ICC, 准确来说是Statistical analysis of discriminability。 The ICC is defined as the ratio of inter-class variation and the intraclass variation. 绘制AWA2的ICC(L2正则化特征) import pickle as pkl import torch as t import n...

Read more

Feature Transformation Ensemble Model with Batch Spectral Regularization for Cross-Domain Few-Shot Classification

Feature Transformation Ensemble Model with Batch Spectral Regularization for Cross-Domain Few-Shot Classification 作者:Bingyu Liu, Zhen Zhao, Zhenpeng Li, Jianan Jiang, Yuhong Guo, Jieping Ye ; AI Tech, DiDi ChuXing 本文的主要工作 propose a feature transformation ensemble model with batch spectral regularization for the Crossdomain few-...

Read more

Boosting the Generalization Capability in Cross-Domain Few-shot Learning via Noise-enhanced Supervised Autoencoder 2021_ICCV

Boosting the Generalization Capability in Cross-Domain Few-shot Learning via Noise-enhanced Supervised Autoencoder 论文的工作 提出了一种泛化能力的模型noise-enhanced supervised autoencoder (NSAE) 用于解决少样本学习中的跨域问题。 NSAE应用并改进了 Supervised autoencoder[1], 并将其用在模型的两阶段训练当中,提高模型的泛化能力。 motivation our observation is that generalizatio...

Read more